
LYAPUNOV FUNCTIONALS FOR FOURTH-ORDER LUBRICATION

EQUATIONS

Mario Bukal† and Manuel Maurette[

†Department of Control and Computer Engineering, Faculty of Electrical Engineering and Computing, University of
Zagreb, Unska 3, 10000 Zagreb, Croatia, mario.bukal@fer.hr
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1 INTRODUCTION

Evolution equations of fourth order in spatial derivatives emerge in large variety of physical systems
[4, 9, 10]. Besides the historically impotant Cahn-Hilliard equation, which describes a phase separation
process in material science [9], the most prominent fourth-order model is the thin-film equation

ut + (uβuxxx)x = 0. (TF)

This equation arises in lubrication approximation theory of thin viscous fluids [4], with u(t, x) ≥ 0 de-
scribing the fluid height. Physically relevant values of the parameter β are β = 1 [8], β = 2 and β = 3
[4, 12], but mathematical curiosity reveals that different values of β yield striking differences in properties
of solutions. For instance, if β ≥ 3.5, interior finite time singularities are not possible [5], while source type
solutions with compact support exist only if 0 < β < 3 [2].

In [3] Bertozzi lists other three lubrication equations, all having the same fourth-order term:
ut + uβuxxxx = 0, (MTF)

ut + (uβuxx)xx = 0, (SATF)

ut + (uβux)xxx = 0. (ATF)

The first one is the modified thin-film equation (MTF), which compared to (TF) lacks the convective term
βuβ−1uxxxux. The last two equations are mathematically interesting: (SATF) having the self-adjoint struc-
ture of the nonlinearity and (ATF) being formal adjoint to (TF). In the rest of the paper we assume that initial
conditions (at t = 0) to the above equations are given by a nonnegative function u0 and periodic boundary
conditions are imposed, i.e. we consider domain being the onedimensional torus T ' [0, 1).

Many nonlinear equations share a rich dissipative structure — the Lyapunov property of certain non-
linear functionals, called entropies, along respective solution trajectories. This also gives rise to desired a
priori estimates, which are crucial in the existence analysis, as well as in the treatment of other qualitative
properties of solutions. Such estimates are particularly important in the analysis of higher-order equations,
since they do not obey the maximum principle.

The thin-film equation (TF) is relatively well studied model, see [1], but the other lubrication equations
did not receive much attention in the literature. In this paper we study dissipation properties of positive
classical solutions to equations (MTF), (SATF) and (ATF). We provide a class of functionals Eα (see
Definition 1 below) that are nonincreasing in time (Lyapunov) along respective solutions. Moreover, we
obtain generic bounds on the rate of dissipation, so called entropy production inequalities. Such properties
are known for the thin-film equation: Eα are Lyapunov functionals provided 3/2 ≤ α+β ≤ 3, and stronger
dissipation bounds hold for 3/2 < α+β < 3 [6, 11]. Concerning the other three lubrication equations, only
entropy conservation property for equation (MTF) is known for α+ β = 1 AND β 6= 0 [3]. Our results on



dissipation structure of these lubrication equations, presented in Theorem 1 and 2 below, are to the best of
our knowledge new in the literature.

In order to accomplish the work, we use an algorithmic approach presented by Jüngel and Matthes [11],
where integration by parts formulae — the key tool in deriving integral bounds — are treated in a systematic
way. That is the topic of the next section.

2 DISSIPATION PROPERTIES OF LUBRICATION EQUATIONS

Let us start with our basic definitions.

Definition 1 Let u be a nonnegative solution to any of the above lubrication equations, then

Eα[u(t)] =
1

α(α− 1)

∫
T
uαdx for all t ≥ 0, α 6= 0, 1, (1)

defines an α-functional called entropy or Lyapunov functional if there exists a constant c ≥ 0 and a
well-defined nonnegative functional Pα such that the following entropy production inequality holds

d

dt
Eα[u(t)] + cPα[u(t)] ≤ 0 for all t ≥ 0. (2)

Note 1 For α = 0 and 1, the limit cases, the α-functionals are defined by E0[u] =
∫
T(u − log u)dx and

E1[u] =
∫
T(u(log u− 1) + 1)dx, which is (up to the sign) the Boltzmann entropy. Functional Pα is called

entropy production and it is typically defined in terms of u and its spatial derivatives, see (7) below.

2.1 THE MODIFIED THIN-FILM EQUATION

Let u : (0,∞)× T→ R+ be a smooth and strictly positive solution to (MTF). We calculate

− d

dt
Eα[u] = −

1

α− 1

∫
T
uα−1utdx =

1

α− 1

∫
T
uα+β

(uxxxx
u

)
dx. (3)

In order to prove the nonnegativity of the last integral, we use all possible integration by parts formulae.
It has been proved in [11], that — based on periodic boundary conditions and particular structure of the
integrand — all integration by parts formulae share the following algebraic representation

I =

∫
T

(
uα+βR

(ux
u
,
uxx
u
,
uxxx
u

))
x
dx =

∫
T
uα+βT

(ux
u
,
uxx
u
,
uxxx
u

,
uxxxx
u

)
= 0 (4)

with R(ξ1, ξ2, ξ3) and T (ξ1, ξ2, ξ3, ξ4) being polynomials in real variables, which are linear combinations
of monomials ξp11 ξ

p2
2 ξ

p3
3 and ξp11 ξ

p2
2 ξ

p3
3 ξ

p4
4 that satisfy p1 + 2p2 + 3p3 = 3 and p1 + 2p2 + 3p3 + 4p4 = 4,

respectively. Based on that observation, there are only three basic integration by parts rules, namely those
corresponding to the nonnegative integer solutions of p1 + 2p2 + 3p3 = 3. These are R1(ξ1, ξ2, ξ3) = ξ31 ,
R2(ξ1, ξ2, ξ3) = ξ1ξ2 and R3(ξ1, ξ2, ξ3) = ξ3 with it’s corresponding shift polynomials. Respectively:
T1(ξ) = (α+ β − 3)ξ41 +3ξ21ξ2, T2(ξ) = (α+ β − 2)ξ21ξ2 + ξ22 + ξ1ξ3 and T3(ξ) = (α+ β − 1)ξ1ξ3 + ξ4.

Since I1 = I2 = I3 = 0, we can write for arbitrary real coefficients c1, c2 and c3,

− d

dt
Eα[u] =

∫
T
uα+βS0

(ux
u
, . . . ,

uxxxx
u

)
dx+ c1I1 + c2I2 + c3I3

=

∫
T
uα+β

(
S0 + c1T1 + c2T2 + c3T3

)(ux
u
, . . . ,

uxxxx
u

)
dx,

where S0(ξ) = ξ4/(α−1). Clearly, performing integration by parts does not change the above integral value,
but only the integrand function. Hence, if there exist a combination of coefficients c1, c2 and c3 which makes
the integrand function nonnegative, i.e. the polynomial (S0 + c1T1 + c2T2 + c3T3)(ξ) nonnegative for all
ξ ∈ R4, then Eα is an entropy. The integral problem of proving an entropy dissipation has been translated
into a decision problem about real polynomials. The big advantage of the latter is that it is allways solvable



in an algorithmic way [13]. This is a famous result by Tarski, and the procedure is in real algebraic geometry
known as quantifier elimination. For example, let p(ξ1, ξ2) = a1ξ

4
1 + a2ξ

2
1ξ2 + a3ξ

2
2 be a given polynomial.

Then the quantified formula ∀ξ1, ξ2 ∈ R : p(ξ1, ξ2) ≥ 0 is equivalent to the quantifier free statment:
either a3 > 0 AND 4a1a3 − a22 ≥ 0 OR a3 = a2 = 0 AND a1 ≥ 0. The proof is elementary [11].

Our decision problem for finding entropies of the modified thin-film equation reads

(∃ c1, c2, c3 ∈ R)(∀ξ ∈ R4) : (S0 + c1T1 + c2T2 + c3T3)(ξ) ≥ 0. (5)

In order to solve (5), we first simplify the polynomial. Notice, from the above homogeneity property of
polynomials, that the highest power with respect to variables ξ3 and ξ4 is one, so that negative values could
be attained. Therefore, those variables can be apriori eliminated by an appropriate choice of coefficients.
Taking c3 = −1/(α − 1) nulllifies variable ξ4 in the polynomial, and further choice of c2 = (α + β −
1)/(α− 1) nullifies the indefinite term ξ1ξ3. Thus, it remains to solve a simpler decision problem

(∃ c1)(∀ξ1, ξ2 ∈ R) : (α+β−3)c1ξ
4
1 +
(
3c1+

(α+ β − 2)(α+ β − 1)

α− 1

)
ξ21ξ2+

α+ β − 1

α− 1
ξ22 ≥ 0. (6)

This problem can be solved directly using the above simple example and elementary algebra, or we can
use the computer algebra system Mathematica and command Reduce therein, which implements the
cylindrical algebraic decomposition (CAD) [7] to solve the quantifier elimination problem. Solving (6)
results in an algebraic set of constraints on real parameters α and β, which reads: 3/2 ≤ α + β ≤ 3 AND
α > 1 OR α + β = 1 AND β 6= 0 (see Appendix). Hence, for given β, all α-functionals with α satisfing
the above constraints, are entropies for the (MTF) equation.

The same procedure can be applied to obtain even stronger dissipation bounds,

− d

dt
Eα[u] ≥ c

∫
T

((
u(α+β)/4

)4
x
+
(
u(α+β)/2

)2
xx

)
dx, (7)

for some strictly positive constant c > 0. Observe that the right hand side in (7) also admits the polynomial
representation c

∫
T u

α+βQ(ux/u, uxx/u)dx with

Q(ξ1, ξ2) =
( γ4
256

+
γ2(γ − 2)2

16

)
ξ41 +

γ2(γ − 2)

4
ξ21ξ2 +

γ2

4
ξ22 , (8)

and γ = α+ β. Therefore, integral inequality (7) translates into the following decision problem

(∃ c1 ∈ R, c > 0)(∀ξ1, ξ2 ∈ R) : S(ξ1, ξ2)− cQ(ξ1, ξ2) ≥ 0, (9)

where S(ξ1, ξ2) is defined by the polynomial expression in (6). To solve the last decision problem, computer
algebra system like Mathematica has to be invoked, and one finds that the α-functionals are dissipated
according to (7) if: 3/2 < α+ β < 3 AND α > 1.

We summarize our results about the modified thin-film equation into the following theorem.

Theorem 1 Let u be smooth, strictly positive, 1-periodic solution to equation (MTF). The functionals Eα
are entropies provided that 3/2 ≤ α + β ≤ 3 AND α > 1 OR α + β = 1 AND β 6= 0. Moreover, if
3/2 < α + β < 3 AND α > 1, entropy production inequality (2) holds for some c > 0 with Pα defined by
the right hand side in (7).

2.2 LUBRICATION EQUATIONS (SATF) AND (ATF)

Next we provide analogous results for other two lubrication equations: (SATF) and (ATF), that only
differ with (MTF) in the polynomial S0, which is characteristic for each equation. Calculating the time
derivative ofEα with respect to solutions of (SATF) and (ATF), and applying integration by parts, we obtain

− d

dt
Eα[u] =

∫
T
uα+βS0

(ux
u
, . . . ,

uxxxx
u

)
dx,

where S0(ξ) = −ξ1ξ3 − βξ21ξ2 and S0(ξ) = −ξ1ξ3 − 3βξ21ξ2 − β(β − 1)ξ41 for (SATF) and (ATF),
respectively.

Solving decision problems like (5) and (9), we obtain the following results.



Theorem 2 (i) Let u be smooth, strictly positive, 1-periodic solution to equation (SATF), then the function-
alsEα are entropies if (α+β−3)(α−2β−3) ≤ 0. (ii) Let u be smooth, strictly positive, 1-periodic solution
to equation (ATF), then the functionals Eα are entropies provided that (2α− β − 3)(α− 2β − 3) ≤ 0.

Furthermore, if the above conditions hold with strict inequalities, then in both cases, there exists a strictly
positive constant c > 0 such that entropy production inequalities (2) hold with Pα as in (7).
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APPENDIX

The following simple code in Mathematica performs quantifier elimination and solves the polynomial
decision problem (6):

In[5]:= ReduceB

ExistsBc1,

ForAllB8Ξ1, Ξ2<, HΑ + Β - 3L c1 Ξ1
4

+
HΑ + Β - 2L HΑ + Β - 1L

Α - 1
+ 3 c1 Ξ1

2
Ξ2 +

Α + Β - 1

Α - 1
Ξ2

2
³

0FF, RealsF �� FullSimplify

Out[5]= HΑ + Β � 1 && Β ¹ 0L ÈÈ Β � 0 &&
3

2
£ Α £ 3 ÈÈ

3

2
£ Α + Β £ 3 && 0 < Β <

1

2
ÈÈ Β < 0 ÈÈ H2 Β ³ 1 && Α > 1 && Α + Β £ 3L
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